TY - JOUR
T1 - Training in crisis communication and volcanic eruption forecasting
T2 - Design and evaluation of an authentic role-play simulation
AU - Dohaney, Jacqueline
AU - Brogt, Erik
AU - Kennedy, Ben
AU - Wilson, Thomas M.
AU - Lindsay, Jan M.
N1 - Funding Information:
This study was funded through a PhD scholarship for Dohaney, from Mighty River Power Ltd. Additional support was provided by Frontiers Abroad and the University of Canterbury Teaching and Development Grants. The authors would like to thank Rebecca Hearne, Alison Jolley, Rebecca Fitzgerald and Daniel Hill for research assistance. The web interface design was piloted by Clay Hamilton, and adapted by Rob Ramsay and John Southward. We would like to thank the reviewers for their helpful comments. Finally, thanks to all the participants in the study throughout its development!
Publisher Copyright:
© 2015 Dohaney et al.
PY - 2015/12/1
Y1 - 2015/12/1
N2 - We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team) focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing upper-year undergraduate students' transferable and geologic reasoning skills. An important goal of the simulation was specifically to improve students' science communication through interdisciplinary team discussions, jointly prepared, and delivered media releases, and real-time, high-pressure, press conferences. By playing roles, students experienced the specific responsibilities of a professional within authentic organisational structures. A qualitative, design-based educational research study was carried out to assess the overall student experience and self-reported learning of skills. A pilot and four subsequent iterations were investigated. Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning experience and reported improved skills. Data from classroom observations and interviews indicate that the students valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics (within, and between the teams) varied depending on the students' background, preparedness, and personality. During early iterations, observation and interviews from students and instructors indicate that some of the goals of the simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C) appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of Iterations 3 and 4 showed an overall improvement in the students' skills and goals being reached. A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed at adapting this curricula to new volcanic and earthquake scenarios.
AB - We present an interactive, immersive, authentic role-play simulation designed to teach tertiary geoscience students in New Zealand to forecast and mitigate a volcanic crisis. Half of the participating group (i.e., the Geoscience Team) focuses on interpreting real volcano monitoring data (e.g., seismographs, gas output etc.) while the other half of the group (i.e., the Emergency Management Team) forecasts and manages likely impacts, and communicates emergency response decisions and advice to local communities. These authentic learning experiences were aimed at enhancing upper-year undergraduate students' transferable and geologic reasoning skills. An important goal of the simulation was specifically to improve students' science communication through interdisciplinary team discussions, jointly prepared, and delivered media releases, and real-time, high-pressure, press conferences. By playing roles, students experienced the specific responsibilities of a professional within authentic organisational structures. A qualitative, design-based educational research study was carried out to assess the overall student experience and self-reported learning of skills. A pilot and four subsequent iterations were investigated. Results from this study indicate that students found these role-plays to be a highly challenging and engaging learning experience and reported improved skills. Data from classroom observations and interviews indicate that the students valued the authenticity and challenging nature of the role-play although personal experiences and team dynamics (within, and between the teams) varied depending on the students' background, preparedness, and personality. During early iterations, observation and interviews from students and instructors indicate that some of the goals of the simulation were not fully achieved due to: A) lack of preparedness, B) insufficient time to respond appropriately, C) appropriateness of roles and team structure, and D) poor communication skills. Small modifications to the design of Iterations 3 and 4 showed an overall improvement in the students' skills and goals being reached. A communication skills instrument (SPCC) was used to measure self-reported pre- and post- communication competence in the last two iterations. Results showed that this instrument recorded positive shifts in all categories of self-perceived abilities, the largest shifts seen in students who participated in press conferences. Future research will be aimed at adapting this curricula to new volcanic and earthquake scenarios.
KW - communication competence
KW - education
KW - emergency management
KW - risk communication
KW - role-play
KW - simulation
KW - the volcanic hazards simulation
KW - volcanic hazards
UR - http://www.scopus.com/inward/record.url?scp=84962090079&partnerID=8YFLogxK
U2 - 10.1186/s13617-015-0030-1
DO - 10.1186/s13617-015-0030-1
M3 - Article
AN - SCOPUS:84962090079
SN - 2191-5040
VL - 4
JO - Journal of Applied Volcanology
JF - Journal of Applied Volcanology
IS - 1
M1 - 12
ER -