Abstract / Description of output
Inertial information processing plays a pivotal role in ego-motion awareness for mobile agents, as inertial measurements are entirely egocentric and not environment dependent. However, they are affected greatly by changes in sensor placement/orientation or motion dynamics, and it is infeasible to collect labelled data from every domain. To overcome the challenges of domain adaptation on long sensory sequences, we propose a novel framework that extracts domain-invariant features of raw sequences from arbitrary domains, and transforms to new domains without any paired data. Through the experiments, we demonstrate that it is able to efficiently and effectively convert the raw sequence from a new unlabelled target domain into an accurate inertial trajectory, benefiting from the physical motion knowledge transferred from the labelled source domain. We also conduct real-world experiments to show our framework can reconstruct physically meaningful trajectories from raw IMU measurements obtained with a standard mobile phone in various attachments.
Original language | English |
---|---|
Number of pages | 4 |
Publication status | Accepted/In press - 21 Sept 2018 |
Event | Modeling the Physical World: Perception, Learning, and Control (NeurIPS 2018 Workshop) - Montreal, Canada Duration: 7 Dec 2018 → 7 Dec 2018 http://phys2018.csail.mit.edu/index.html |
Workshop
Workshop | Modeling the Physical World: Perception, Learning, and Control (NeurIPS 2018 Workshop) |
---|---|
Country/Territory | Canada |
City | Montreal |
Period | 7/12/18 → 7/12/18 |
Internet address |