Transport, degradation and cell wall-integration of XXFGol, a growth-regulating nonasaccharide of xyloglucan, in pea stems

H M Warneck, D C Fulton, H U Seitz, S C Fry

Research output: Contribution to journalArticlepeer-review

Abstract

When [glucitol-H-3]XXFGol (a (NaBH4)-H-3-reduced xyloglucan nonasaccharide) was applied to excised shoots of pea (Pisum sativum L. cv. Progress) at the base of the epicotyl, it inhibited growth in the elongation zone, 4-5 cm distal. Experiments were conducted to discover whether such H-3-oligosaccharides are translocated intact over this distance, or whether an intercellular second messenger would have to be postulated. After 24 h, H-3 from [glucitol-H-3]XXFGol and [glucitol-H-3]XXXGol showed U-shaped distributions, with most H-3 at the base and apex of the Radioactivity from [fucosyl-H-3]XXFGol and [xylo-syl-H-3]XXFG also moved acropetally, but did not concentrate at the apex, possibly owing to removal from the transpiration stream of fucose and xylose formed by partial hydrolysis of XXFG en route. When 10(-7) M [glucitol-H-3]XXFGol was supplied, about 14 fmol . seedling(-1) of apparently intact [H-3]XXFGol was extractable from the elongation zone after 24 h, Larger amounts of degradation products were extractable (including free [H-3]glucitol) and some wall-bound PI-hemicellulose was present (presumably formed by the oligosaccharides acting as acceptor substrates for transglycosylation). We conclude that biologically active oligosaccharides of xyloglucan can move through the stem acropetally and that they are maintained at low steady-state concentrations by both hydrolysis and transglycosylation.

Original languageEnglish
Pages (from-to)78-85
Number of pages8
JournalPlanta
Volume204
Issue number1
Publication statusPublished - Jan 1998

Fingerprint

Dive into the research topics of 'Transport, degradation and cell wall-integration of XXFGol, a growth-regulating nonasaccharide of xyloglucan, in pea stems'. Together they form a unique fingerprint.

Cite this