Abstract
Ge and Sn are unreactive at ambient conditions. Their significant promise for optoelectronic applications is thus largely confined to thin film investigations. We sought to remove barriers to reactivity here by accessing a unique pressure, 10 GPa, where the two elements can adopt the same crystal structure (tetragonal, I41/amd) and exhibit compatible atomic radii. The route to
GeSn solid solution, however, even under these directed conditions, is different. Reaction upon heating at 10 GPa occurs between unlike crystal structures (Ge, Fd3m and Sn, I4/mmm), which also have highly incompatible atomic radii. They should not react, but they do. A reconstructive transformation of I4/mmm into the I41/amd solid solution then follows. The new tetragonal GeSn solid solution (I41/amd a = 5.280(1) Å, c = 2.915(1) Å, Z = 4 at 9.9 GPa and 298 K) also constitutes the structural and electronic bridge between 4-fold and newly prepared 8-fold coordinated alloy cubic symmetries. Furthermore, using this high-pressure route, bulk cubic diamond-structured GeSn alloys can now be obtained at ambient pressure. The findings here remove confining conventional
criteria on routes to synthesis. This opens innovative avenues to advanced materials development.
GeSn solid solution, however, even under these directed conditions, is different. Reaction upon heating at 10 GPa occurs between unlike crystal structures (Ge, Fd3m and Sn, I4/mmm), which also have highly incompatible atomic radii. They should not react, but they do. A reconstructive transformation of I4/mmm into the I41/amd solid solution then follows. The new tetragonal GeSn solid solution (I41/amd a = 5.280(1) Å, c = 2.915(1) Å, Z = 4 at 9.9 GPa and 298 K) also constitutes the structural and electronic bridge between 4-fold and newly prepared 8-fold coordinated alloy cubic symmetries. Furthermore, using this high-pressure route, bulk cubic diamond-structured GeSn alloys can now be obtained at ambient pressure. The findings here remove confining conventional
criteria on routes to synthesis. This opens innovative avenues to advanced materials development.
Original language | English |
---|---|
Pages (from-to) | 7920-7924 |
Number of pages | 5 |
Journal | Journal of the American Chemical Society |
Volume | 143 |
Issue number | 21 |
DOIs | |
Publication status | Published - 19 May 2021 |
Keywords / Materials (for Non-textual outputs)
- new materials
- synthesis
- alloys
- solid solutions
- pressure and temperature
- angle dispersive X-ray diffraction