Abstract / Description of output
In recent years, our research in computational neuroscience has focused on understanding how populations of neurons encode naturalistic stimuli. In particular, we focused on how populations of neurons use the time domain to encode sensory information. In this focused review, we summarize this recent work from our laboratory. We focus in particular on the mathematical methods that we developed for the quantification of how information is encoded by populations of neurons and on how we used these methods to investigate the encoding of complex naturalistic sounds in auditory cortex. We review how these methods revealed a complementary role of low frequency oscillations and millisecond precise spike patterns in encoding complex sounds and in making these representations robust to imprecise knowledge about the timing of the external stimulus. Further, we discuss challenges in extending this work to understand how large populations of neurons encode sensory information. Overall, this previous work provides analytical tools and conceptual understanding necessary to study the principles of how neural populations reflect sensory inputs and achieve a stable representation despite many uncertainties in the environment.
Original language | English |
---|---|
Article number | 907851 |
Pages (from-to) | 1-14 |
Number of pages | 15 |
Journal | Advances in Neuroscience |
Volume | 2014 |
DOIs | |
Publication status | Published - 19 Oct 2014 |