Projects per year
Abstract
In disordered colloidal systems, we experimentally measure the normal modes with the covariance matrix method and clarify the origin of low-frequency quasilocalization at the single-particle level. We observe important features from both jamming and glass simulations: There is a plateau in the density of
states [D(w)] which is suppressed upon compression, as predicted by jamming; within the same systems,
we also find that the low-frequency quasilocalization originates from the large vibrations of defective
structures coupled with transverse excitations, consistent with a recent glass simulation. The coexistence
of these features demonstrates an experimental link between jamming and glass. Extensive simulations
further show that such a structural origin of quasilocalization is universally valid for various temperatures
and volume fractions.
states [D(w)] which is suppressed upon compression, as predicted by jamming; within the same systems,
we also find that the low-frequency quasilocalization originates from the large vibrations of defective
structures coupled with transverse excitations, consistent with a recent glass simulation. The coexistence
of these features demonstrates an experimental link between jamming and glass. Extensive simulations
further show that such a structural origin of quasilocalization is universally valid for various temperatures
and volume fractions.
Original language | English |
---|---|
Article number | 095501 |
Pages (from-to) | 095501-1 095501-5 |
Number of pages | 5 |
Journal | Physical Review Letters |
Volume | 108 |
DOIs | |
Publication status | Published - 2 Mar 2012 |
Fingerprint
Dive into the research topics of 'Understanding the Low-Frequency Quasilocalized Modes in Disordered Colloidal Systems'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Edinbugrh Soft Matter and Statistical Physics Programme Grant Renewal
Cates, M., Poon, W., Ackland, G., Clegg, P., Evans, M., MacPhee, C. & Marenduzzo, D.
1/10/07 → 31/03/12
Project: Research