Abstract / Description of output
Several recent papers have investigated the potential of language models as knowledge bases as well as the existence of severe biases when extracting factual knowledge. In this work, we focus on the factual probing performance over unseen prompts from tuning, and using a probabilistic view we show the inherent misalignment between pre-training and downstream tuning objectives in language models for probing knowledge. We hypothesize that simultaneously debiasing these objectives can be the key to generalisation over unseen prompts. We propose an adapter-based framework, **UniArk**, for generalised and consistent factual knowledge extraction through simple methods without introducing extra parameters. Extensive experiments show that UniArk can significantly improve the model's out-of-domain generalisation as well as consistency under various prompts. Additionally, we construct **ParaTrex**, a large-scale and diverse dataset for measuring the inconsistency and out-of-domain generation of models. Further, ParaTrex offers a reference method for constructing paraphrased datasets using large language models.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics |
Subtitle of host publication | Human Language Technologies |
Editors | Kevin Duh, Helena Gomez, Steven Bethard |
Publisher | Association for Computational Linguistics |
Pages | 7018-7035 |
Number of pages | 18 |
Volume | 1 |
ISBN (Electronic) | 9798891761148 |
DOIs | |
Publication status | Published - 21 Jun 2024 |
Event | 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics - Mexico City, Mexico Duration: 16 Jun 2024 → 21 Jun 2024 https://2024.naacl.org/ |
Conference
Conference | 2024 Annual Conference of the North American Chapter of the Association for Computational Linguistics |
---|---|
Abbreviated title | NAACL 2024 |
Country/Territory | Mexico |
City | Mexico City |
Period | 16/06/24 → 21/06/24 |
Internet address |