TY - UNPB
T1 - Unlocking genome-based prediction and selection in conifers: the key role of within-family prediction accuracy
AU - Papin, Victor
AU - Gorjanc, Gregor
AU - Pocrnic, Ivan
AU - Bouffier, Laurent
AU - Sanchez, Leopoldo
PY - 2024/1/29
Y1 - 2024/1/29
N2 - Context: Genomic selection is a promising approach for forest tree breeding. However, its advantage in terms of prediction accuracy over conventional pedigree-based methods is unclear and within-family accuracy is rarely assessed. Aims: We used an pedigree-based model (ABLUP) with corrected pedigree data as a baseline reference for assessing the prediction accuracy of genome-based model (GBLUP) at the global and within-family levels in maritime pine (Pinus pinaster Ait). Methods: We sampled 39 full-sib families, each comprising 10 to 40 individuals, to constitute an experimental population of 833 individuals. A stochastic simulation model was also developed to explore other scenarios of heritability, training set size and tagging density. Results: Prediction accuracies with GBLUP and ABLUP were similar and accuracy with GBLUP within-family was on average zero with large variation between families. Simulations revealed that the number of individuals in the training set was the principal factor limiting GBLUP accuracy in our study and likely in many forest tree breeding programmes. Accurate within-family prediction is possible if 40-65 individuals per full-sib family are included in the genomic training set, from a total of 1600-2000 individuals in the training set. Conclusion: Such conditions lead to a significant advantage of GBLUP over ABLUP in terms of prediction accuracy and more clearly justify the switch to genome-based prediction and selection in forest trees.
AB - Context: Genomic selection is a promising approach for forest tree breeding. However, its advantage in terms of prediction accuracy over conventional pedigree-based methods is unclear and within-family accuracy is rarely assessed. Aims: We used an pedigree-based model (ABLUP) with corrected pedigree data as a baseline reference for assessing the prediction accuracy of genome-based model (GBLUP) at the global and within-family levels in maritime pine (Pinus pinaster Ait). Methods: We sampled 39 full-sib families, each comprising 10 to 40 individuals, to constitute an experimental population of 833 individuals. A stochastic simulation model was also developed to explore other scenarios of heritability, training set size and tagging density. Results: Prediction accuracies with GBLUP and ABLUP were similar and accuracy with GBLUP within-family was on average zero with large variation between families. Simulations revealed that the number of individuals in the training set was the principal factor limiting GBLUP accuracy in our study and likely in many forest tree breeding programmes. Accurate within-family prediction is possible if 40-65 individuals per full-sib family are included in the genomic training set, from a total of 1600-2000 individuals in the training set. Conclusion: Such conditions lead to a significant advantage of GBLUP over ABLUP in terms of prediction accuracy and more clearly justify the switch to genome-based prediction and selection in forest trees.
U2 - 10.1101/2024.01.25.577259
DO - 10.1101/2024.01.25.577259
M3 - Preprint
BT - Unlocking genome-based prediction and selection in conifers: the key role of within-family prediction accuracy
PB - bioRxiv
ER -