Projects per year
Abstract / Description of output
Although episodes of surface uplift and elevated seismicity precede many volcanic eruptions, their temporal evolution is often complex, and apparently in contradiction to simple trends predicted by mechanical deformation models. Here we use cGPS and seismic data recorded at Sierra Negra volcano, Galápagos Islands, to show how the edifice responded to stress changes driven by magma accumulation in a shallow sill. The rate of uplift varied during the thirteen years and 6.5 m of inflation before the 2018 eruption. The number of earthquakes per unit of uplift increased exponentially with total uplift as the differential stress increased. Accordingly, the temporal seismicity rate varied in time as a function of both the total uplift and the uplift rate. The Gutenberg-Richter b-value decreased as a function of total uplift. In the final six months before the eruption, a sequence of large (M>4) earthquakes regulated the state of stress on the fault, each being followed by 2-3 days of post-seismic quiescence, and retarding the increase in seismicity rate. These earthquakes did not affect the overall uplift rate. Subsidence of 8.5 m accompanied the two-month eruption. On resumption of uplift, the number of earthquakes per unit of uplift was very low, and the b-value high, reflecting the relaxed stress state of the fault system. These observations show that crustal deformation becomes increasingly brittle at higher stress states, and supports theoretical models based on elastic-brittle mechanics. They suggest that joint interpretation of deformation and seismicity is key for forecasting future eruptions in similar volcanic settings.
Original language | English |
---|---|
Article number | e2021JB022244 |
Journal | Journal of Geophysical Research. Solid Earth |
Volume | 126 |
Issue number | 7 |
DOIs | |
Publication status | Published - 2 Jul 2021 |
Fingerprint
Dive into the research topics of 'Uplift and Seismicity driven by Magmatic Inflation at Sierra Negra Volcano, Galápagos Islands'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Dynamic triggering and criticality: earthquake interactions during unrest at Sierra Negra volcano, Galapagos Islands
12/03/18 → 18/04/19
Project: Research