TY - JOUR
T1 - Use of 3D Printing Technology to Create a Canine Simulator for Cerebrospinal Fluid Sampling at the Lumbar Subarachnoid Space
AU - Madden, Megan
AU - Collins, Richard
AU - Schwarz, Tobias
AU - Suñol, Anna
PY - 2022/7/4
Y1 - 2022/7/4
N2 - Cerebrospinal fluid (CSF) sampling at the lumbar subarachnoid space (LSS) is technically challenging to learn. Currently, training relies on cadaver availability or performance in a clinical scenario. This study aims to develop and validate a low-cost, high-fidelity simulator to train in this technique. Using three-dimensional printing technology, a model of a healthy adult dog's lumbosacral vertebral column was produced. The model was augmented with synthetic materials and a fluidic system to replicate all procedural steps and permit successful CSF collection. The simulator was validated by four experts, who rated it highly across multiple criteria. Final-year veterinary students were recruited to take part in practical sessions using either the simulator (n = 16) or a cadaver (n = 16). Performance was recorded for each student, and feedback was obtained using an anonymous online survey. Student performance was similar between groups (p = .2), with 87.5% and 68.75% of students in the simulator and cadaver group, respectively, successfully placing the needle into the LSS. All successful students in the simulator group were able to obtain a CSF sample, versus none in the cadaver group. No difference in the number of attempts was detected between groups (p > .99), with most students taking more than three attempts. User experience was similar between groups, with 93.8% of students in each group rating the session as a positive learning experience. In summary, we demonstrate the validity of a novel, low-cost, and anatomically precise simulator that can be used for teaching CSF sampling at the LSS.
AB - Cerebrospinal fluid (CSF) sampling at the lumbar subarachnoid space (LSS) is technically challenging to learn. Currently, training relies on cadaver availability or performance in a clinical scenario. This study aims to develop and validate a low-cost, high-fidelity simulator to train in this technique. Using three-dimensional printing technology, a model of a healthy adult dog's lumbosacral vertebral column was produced. The model was augmented with synthetic materials and a fluidic system to replicate all procedural steps and permit successful CSF collection. The simulator was validated by four experts, who rated it highly across multiple criteria. Final-year veterinary students were recruited to take part in practical sessions using either the simulator (n = 16) or a cadaver (n = 16). Performance was recorded for each student, and feedback was obtained using an anonymous online survey. Student performance was similar between groups (p = .2), with 87.5% and 68.75% of students in the simulator and cadaver group, respectively, successfully placing the needle into the LSS. All successful students in the simulator group were able to obtain a CSF sample, versus none in the cadaver group. No difference in the number of attempts was detected between groups (p > .99), with most students taking more than three attempts. User experience was similar between groups, with 93.8% of students in each group rating the session as a positive learning experience. In summary, we demonstrate the validity of a novel, low-cost, and anatomically precise simulator that can be used for teaching CSF sampling at the LSS.
U2 - 10.3138/jvme-2021-0159
DO - 10.3138/jvme-2021-0159
M3 - Article
C2 - 35862374
SP - 1
EP - 10
JO - Journal of Veterinary Medical Education
JF - Journal of Veterinary Medical Education
SN - 0748-321X
M1 - e20210159
ER -