Use of streamnormal forces within an array of tidal power harvesters

Ignazio Maria Viola, Zhi Gao, James Smith

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Tidal energy is a renewable and promising energy source. Turbines are deployed under water in marine channels where there is a fast tidal current. The first arrays have only recently been deployed and there is no consensus yet on the optimal array design. In this paper, we explore whether the maximum harvestable power can be increased by using harvesters or flow deflectors that exert a side force in the streamnormal direction to oppose the expansion of the streamtube. The power harvesting and the side force exertion are modelled with sink terms in the two-dimensional Reynolds-averaged Navier-Stokes equations. We found that the power limit increases linearly with the side force, and it should be exerted from the upstream side edges of the array. We conclude that future arrays might not be made only of turbines that harvest power, but also of deflectors such as vertical wings of size comparable to a turbine. The promising results of this theoretical study may direct new research on the use of deflectors to maximise the power harvested by tidal arrays.

Original languageEnglish
Article number e0270578
JournalPLoS ONE
Volume17
Issue number7
Early online date6 Jul 2022
DOIs
Publication statusE-pub ahead of print - 6 Jul 2022

Keywords / Materials (for Non-textual outputs)

  • Consensus
  • Energy-Generating Resources
  • Water

Fingerprint

Dive into the research topics of 'Use of streamnormal forces within an array of tidal power harvesters'. Together they form a unique fingerprint.

Cite this