Abstract
Foreign language learners can acquire new vocabulary by using cognate and context clues when reading. To measure such incidental comprehension, we devise an experimental framework that involves reading mixed-language “macaronic” sentences. Using data collected via Amazon Mechanical Turk, we train a graphical model to simulate a human subject’s comprehension of foreign words, based on cognate clues (edit distance to an English word), context clues (pointwise mutual information), and prior exposure. Our model does a reasonable job at predicting which words a user will be able to understand, which should facilitate the automatic construction of comprehensible text for personalized foreign language education.
Original language | English |
---|---|
Title of host publication | Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) |
Place of Publication | Berlin, Germany |
Publisher | Association for Computational Linguistics |
Pages | 1859-1869 |
Number of pages | 11 |
ISBN (Print) | 978-1-945626-00-5 |
DOIs | |
Publication status | Published - 1 Aug 2016 |
Event | 54th Annual Meeting of the Association for Computational Linguistics - Berlin, Germany Duration: 7 Aug 2016 → 12 Aug 2016 https://mirror.aclweb.org/acl2016/ |
Conference
Conference | 54th Annual Meeting of the Association for Computational Linguistics |
---|---|
Abbreviated title | ACL 2016 |
Country/Territory | Germany |
City | Berlin |
Period | 7/08/16 → 12/08/16 |
Internet address |