TY - JOUR
T1 - Vitamin D receptor signaling contributes to susceptibility to infection with Leishmania major
AU - Ehrchen, Jan
AU - Helming, Laura
AU - Varga, Georg
AU - Pasche, Bastian
AU - Loser, Karin
AU - Gunzer, Matthias
AU - Sunderkötter, Cord
AU - Sorg, Clemens
AU - Roth, Johannes
AU - Lengeling, Andreas
PY - 2007
Y1 - 2007
N2 - We have previously reported that 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) can selectively suppress key functions of interferon-gamma (IFN-gamma) activated macrophages. To further explore this mechanism for its relevance in vivo, we investigated an infection model that crucially depends on the function of IFN-gamma activated macrophages, the infection with the intracellular protozoan Leishmania major. 1Alpha,25(OH)2D3 treatment of L. major infected macrophages demonstrated a vitamin D receptor (Vdr) dependent inhibition of macrophage killing activity. Further analysis showed that this was a result of decreased production of nitric oxide by 1alpha,25(OH)2D3-treated macrophages due to Vdr-dependent up-regulation of arginase 1 expression, which overrides NO production by Nos2. When analyzing the course of infection in vivo, we found that Vdr-knockout (Vdr-KO) mice were more resistant to L. major infection than their wild-type littermates. This result is in agreement with an inhibitory influence of 1alpha,25(OH)2D3 on the macrophage mediated host defense. Further investigation showed that Vdr-KO mice developed an unaltered T helper cell type 1 (Th1) response on infection as indicated by normal production of IFN-gamma by CD4+ and CD8+ T cells. Therefore, we propose that the absence of 1alpha,25(OH)2D3-mediated inhibition of macrophage microbicidal activity in Vdr-KO mice results in increased resistance to Leishmania infection.
AB - We have previously reported that 1alpha,25-dihydroxyvitamin D3 (1alpha,25(OH)2D3) can selectively suppress key functions of interferon-gamma (IFN-gamma) activated macrophages. To further explore this mechanism for its relevance in vivo, we investigated an infection model that crucially depends on the function of IFN-gamma activated macrophages, the infection with the intracellular protozoan Leishmania major. 1Alpha,25(OH)2D3 treatment of L. major infected macrophages demonstrated a vitamin D receptor (Vdr) dependent inhibition of macrophage killing activity. Further analysis showed that this was a result of decreased production of nitric oxide by 1alpha,25(OH)2D3-treated macrophages due to Vdr-dependent up-regulation of arginase 1 expression, which overrides NO production by Nos2. When analyzing the course of infection in vivo, we found that Vdr-knockout (Vdr-KO) mice were more resistant to L. major infection than their wild-type littermates. This result is in agreement with an inhibitory influence of 1alpha,25(OH)2D3 on the macrophage mediated host defense. Further investigation showed that Vdr-KO mice developed an unaltered T helper cell type 1 (Th1) response on infection as indicated by normal production of IFN-gamma by CD4+ and CD8+ T cells. Therefore, we propose that the absence of 1alpha,25(OH)2D3-mediated inhibition of macrophage microbicidal activity in Vdr-KO mice results in increased resistance to Leishmania infection.
U2 - 10.1096/fj.06-7261com
DO - 10.1096/fj.06-7261com
M3 - Article
C2 - 17551101
SN - 0892-6638
VL - 21
SP - 3208
EP - 3218
JO - The FASEB Journal
JF - The FASEB Journal
IS - 12
ER -