VLT/MUSE Characterisation of Dimorphos Ejecta from the DART Impact

Brian P. Murphy*, Cyrielle Opitom, Colin Snodgrass, Matthew M. Knight, Jian-Yang Li, Nancy L. Chabot, Andrew S. Rivkin, Simon F. Green, Paloma Guetzoyan, Daniel Gardener, Julia de León

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We have observed the Didymos-Dimorphos binary system with the MUSE integral field unit spectrograph mounted at the Very Large Telescope (VLT) pre and post-DART impact, and captured the ensuing ejecta cone, debris cloud, and tails at sub-arcsecond resolutions. We targeted the Didymos system over 11 nights from 26 September to 25 October 2022, and utilized both narrow and wide-field observations with and without adaptive optics, respectively. We took advantage of the spectral-spatial coupled measurements and produced both white-light images and spectral maps of the dust reflectance. We identified and characterized numerous dust features, such as the ejecta cone, spirals, wings, clumps, and tails. We found that the base of the Sunward edge of the wings, from 03 to 19 October, consistent with maximum grain sizes on the order of 0.05-0.2 mm, and that the earliest detected clumps have the highest velocities on the order of 10 m/s. We also see that three clumps in narrow-field mode (8x8'') exhibit redder colors and slower speeds, around 0.09 m/s, than the surrounding ejecta, likely indicating that the clump is comprised of larger, slower grains. We measured the properties of the primary tail, and resolved and measured the properties of the secondary tail earlier than any other published study, with first retrieval on 03 October. Both tails exhibit similarities in curvature and relative flux, however, the secondary tail appears thinner, which may be caused by lower energy ejecta and possibly a low energy formation mechanism such as secondary impacts.
Original languageEnglish
Article number238
Pages (from-to)1-17
Number of pages17
JournalThe Planetary Science Journal
Volume4
Issue number12
DOIs
Publication statusPublished - 13 Dec 2023

Keywords / Materials (for Non-textual outputs)

  • MODEL

Fingerprint

Dive into the research topics of 'VLT/MUSE Characterisation of Dimorphos Ejecta from the DART Impact'. Together they form a unique fingerprint.

Cite this