Weight and see: loading working memory improves incidental identification of irrelevant faces

David Carmel, Jake Fairnie, Nilli Lavie

Research output: Contribution to journalArticlepeer-review


Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie's load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified.
Original languageEnglish
Article number286
JournalFrontiers in Psychology
Publication statusPublished - Aug 2012


Dive into the research topics of 'Weight and see: loading working memory improves incidental identification of irrelevant faces'. Together they form a unique fingerprint.

Cite this