Went Fishing, Caught a Snake: A sinuous receptor links cAMP signaling to myelin formation by Schwann cells in the vertebrate nervous system

Dies Meijer*

*Corresponding author for this work

Research output: Contribution to journalShort surveypeer-review

Abstract

A highly ordered, insulating layer of lipids and proteins known as the myelin sheath surrounds neuronal axons in our nervous system, allowing the rapid conduction of electrical impulses along nerve fibers. Myelin is laid down and maintained by dedicated neuroglia cells—oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system. Formation of the myelin sheath is under strict axonal control and involves the wrapping of vast amounts of glial membrane around axons (1). The process is initiated by axon-glial cell contact, which elicits an adenosine 3′,5′-monophosphate (cAMP) signal within the glial cell. This signal drives myelin formation (2), but the molecular nature of the communication that triggers it has not been clear. On page 1402 of this issue, Monk et al. (3) provide compelling evidence for a cell surface receptor in Schwann cells that induces cAMP and myelin production in response to the targeted axon.

Original languageEnglish
Pages (from-to)1353-1354
Number of pages2
JournalScience
Volume325
Issue number5946
DOIs
Publication statusPublished - 11 Sept 2009

Fingerprint

Dive into the research topics of 'Went Fishing, Caught a Snake: A sinuous receptor links cAMP signaling to myelin formation by Schwann cells in the vertebrate nervous system'. Together they form a unique fingerprint.

Cite this