Abstract / Description of output
This paper explores how borrowers’ financial and personal information, loan characteristics and lending models affect peer-to-peer (P2P) loan funding outcomes. Using a large sample of listings from one of the largest Chinese online P2P lending platforms, we find that those borrowers earning a higher income or who own a car are more likely to receive a loan, pay lower interest rates, and are less likely to default. The credit grade assigned by the lending platform may not represent the creditworthiness of potential borrowers. We also find that the unique offline process in the Chinese P2P online lending platform exerts significant influence on the lending decision. We discuss the implications of our results for the design of big data-based lending markets.
Original language | English |
---|---|
Pages (from-to) | 425-441 |
Number of pages | 17 |
Journal | Information Systems Frontiers |
Volume | 19 |
Issue number | 3 |
Early online date | 28 Mar 2017 |
DOIs | |
Publication status | Published - Jun 2017 |
Keywords / Materials (for Non-textual outputs)
- China
- Fintech
- information asymmetry
- listing outcomes
- Peer-to-Peer (P2P) lending
- offline authentication