Abstract
There is a growing interest in automatically predicting the gender and age of authors from texts. However, most research so far ignores that language use is related to the social identity of speakers, which may be different from their biological identity. In this paper, we combine insights from sociolinguistics with data collected through an online game, to underline the importance of approaching age and gender as social variables rather than static biological variables. In our game, thousands of players guessed the gender and age of Twitter users based on tweets alone. We show that more than 10% of the Twitter users do not employ language that the crowd associates with their biological sex. It is also shown that older Twitter users are often perceived to be younger. Our findings highlight the limitations of current approaches to gender and age
prediction from texts.
prediction from texts.
Original language | English |
---|---|
Title of host publication | COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, August 23-29, 2014, Dublin, Ireland |
Publisher | Association for Computational Linguistics |
Pages | 1950-1961 |
Number of pages | 12 |
Publication status | Published - 2014 |