Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts

Geng Lyu, Xukun Shen, Taku Komura, Kartic Subr, Lijun Teng

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Displays that can portray environments that are perceivable from multiple views are known as multiscopic displays. Some
multiscopic displays enable realistic perception of 3D environments without the need for cumbersome mounts or fragile head-tracking algorithms. These automultiscopic displays carefully control the distribution of emitted light over space, direction (angle) and time so that even a static image displayed can encode parallax across viewing directions (lightfield). This allows simultaneous observation by multiple viewers, each perceiving 3D from their own (correct) perspective. Currently, the illusion can only be effectively maintained over a narrow range of viewing angles. In this paper, we propose and analyze a simple solution to widen the range of viewing angles for automultiscopic displays that use parallax barriers. We propose the use of a refractive medium, with a high refractive index, between the display and parallax barriers. The inserted medium warps the exitant lightfield in a way that increases the potential viewing angle. We analyze the consequences of this warp and build a prototype with a 93% increase in the effective viewing angle.
Original languageEnglish
Number of pages10
JournalIEEE Transactions on Visualization and Computer Graphics
Early online date19 Jan 2018
Publication statusPublished - 18 Mar 2018
EventIEEE VR 2018, the 25th IEEE Conference on Virtual Reality and 3D User Interfaces - Stadthalle Reutlingen, Reutlingen, Germany
Duration: 17 Mar 201821 Mar 2018


Dive into the research topics of 'Widening Viewing Angles of Automultiscopic Displays using Refractive Inserts'. Together they form a unique fingerprint.

Cite this