Widespread recombination within human parechoviruses: analysis of temporal dynamics and constraints

K. S. Benschop, C. H. Williams, K. C. Wolthers, G. Stanway, P. Simmonds

Research output: Contribution to journalArticlepeer-review

Abstract

Human parechoviruses (HPeVs), members of the family Picornaviridae, are classified into six types. To investigate the dynamics and likelihood of recombination among HPeVs, we compared phylogenies of two distant regions (VP1 and 3Dpol) of 37 HPeV isolates (types 1 and 3–5) and prototype sequences (types 1–6). Evidence for frequent recombination between HPeV1, 4, 5 and 6 was found. The likelihood of recombination was correlated with the degree of VP1 divergence and differences in isolation dates, both indicative of evolutionary times of divergence. These temporal dynamics were found to be most similar to those of human enterovirus species B variants. In contrast, HPeV3 remained phylogenetically distinct from other types throughout the genome. As HPeV3 is equally divergent in nucleotide sequence from the other HPeV types, its genetic isolation may reflect different biology and changed cellular tropisms, arising from the deletion of the RGD motif, and likely use of a non-integrin receptor.
Original languageEnglish
Pages (from-to)1030-1035
Number of pages6
JournalJournal of General Virology
Volume89
Issue number4
DOIs
Publication statusPublished - Apr 2008

Fingerprint

Dive into the research topics of 'Widespread recombination within human parechoviruses: analysis of temporal dynamics and constraints'. Together they form a unique fingerprint.

Cite this