Within and transgenerational immune priming in an insect to a DNA virus

Hannah J. Tidbury, Amy B. Pedersen, Mike Boots

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Invertebrates mount a sophisticated immune response with the potential to exhibit a form of immune memory through 'priming'. Increased immune protection following early exposure to bacteria has been found both later in life (within generation priming) and in the next generation (transgeneration priming) in a number of invertebrates. However, it is unclear how general immune priming is and whether immune priming occurs in response to different parasites, including viruses. Here, using Plodia interpuctella (Lepidoptera) and its natural DNA virus, Plodia interpunctella granulosis virus, we find evidence for both within generation and transgeneration immune priming. Individuals previously exposed to low doses of virus, as well as the offspring of exposed individuals, are subsequently less susceptible to viral challenge. Relatively little is known about the mechanisms that underpin viral immunity but it is probable that the viral immune response is somewhat different to that of bacteria. We show that immune priming may, however, be a characteristic of both responses, mediated through different mechanisms, suggesting that immune memory may be a general phenomenon of insect immunity. This is important because immune priming may influence both host-parasite population and evolutionary dynamics.

Original languageEnglish
Pages (from-to)871-876
Number of pages6
JournalProceedings of the Royal Society B-Biological Sciences
Volume278
Issue number1707
DOIs
Publication statusPublished - 22 Mar 2011

Keywords / Materials (for Non-textual outputs)

  • invertebrate immunity
  • immune priming
  • virus
  • Plodia interpunctella
  • PiGV

Fingerprint

Dive into the research topics of 'Within and transgenerational immune priming in an insect to a DNA virus'. Together they form a unique fingerprint.

Cite this