Writing and Detecting Topological Charges in Exfoliated Fe5–xGeTe2

Alex Moon, Yue Li, Conor McKeever, Brian W. Casas, Moises Bravo, Wenkai Zheng, Juan Macy, Amanda K. Petford-Long, Gregory T. McCandless, Julia Y. Chan, Charudatta Phatak, Elton J. G. Santos, Luis Balicas

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

Fe5–xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5–xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a “magic” thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm–2), and the concomitant anomalous (ρxyA,max ≃22.6 μΩ cm) and topological (ρxyu,T 1≃5 μΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.
Original languageEnglish
Pages (from-to)4216-4228
Number of pages13
JournalACS Nano
Issue number5
Early online date23 Jan 2024
Publication statusPublished - 6 Feb 2024

Keywords / Materials (for Non-textual outputs)

  • merons
  • skyrmions
  • topological charges
  • anomalous Hall effect
  • topological Hall effect


Dive into the research topics of 'Writing and Detecting Topological Charges in Exfoliated Fe5–xGeTe2'. Together they form a unique fingerprint.

Cite this