X-ray Emission From Hot Gas in Galaxy Groups and Clusters in Simba

Dylan Robson, Romeel Davé

Research output: Contribution to journalArticlepeer-review

Abstract / Description of output

We examine X-ray scaling relations for massive haloes (⁠M500>1012.3M⊙⁠) in the simba galaxy formation simulation. The X-ray luminosity, LX versus M500 has power-law slopes ≈53 and ≈83 above and below 1013.5M⊙⁠, deviating from the self-similarity increasingly to low masses. TXM500 is self-similar above this mass, and slightly shallower below it. Comparing simba to observed TX scalings, we find that LX, LX-weighted [Fe/H], and entropies at 0.1R200 (S0.1) and R500 (S500) all match reasonably well. S500TX is consistent with self-similar expectations, but S0.1TX is shallower at lower TX, suggesting the dominant form of heating moves from gravitational shocks in the outskirts to non-gravitational feedback in the cores of smaller groups. simba matches observations of LX versus central galaxy stellar mass M*, predicting the additional trend that star-forming galaxies have higher LX(M*). Electron density profiles for M500>1014M⊙ haloes show a ∼0.1R200 core, but the core is larger at lower masses. TX are reasonably matched to observations, but entropy profiles are too flat versus observations for intermediate-mass haloes, with Score ≈ 200–400 keV cm2. simba’s [Fe/H] profile matches observations in the core but overenriches larger radii. We demonstrate that Simba’s bipolar jet AGN feedback is most responsible for increasingly evacuating lower-mass haloes, but the profile comparisons suggest this may be too drastic in the inner regions.
Original languageEnglish
Pages (from-to)3061-3076
Number of pages16
JournalMonthly Notices of the Royal Astronomical Society
Volume498
Issue number3
Early online date31 Aug 2020
DOIs
Publication statusPublished - 1 Nov 2020

Keywords / Materials (for Non-textual outputs)

  • astro-ph.GA

Fingerprint

Dive into the research topics of 'X-ray Emission From Hot Gas in Galaxy Groups and Clusters in Simba'. Together they form a unique fingerprint.

Cite this