Abstract
Unranked node-labeled trees can be represented using their minimal dag (directed acyclic graph). For XML this achieves high compression ratios due to their repetitive mark up. Unranked trees are often represented through first child/next sibling (fcns) encoded binary trees. We study the difference in size (= number of edges) of minimal dag versus minimal dag of the fcns encoded binary tree. One main finding is that the size of the dag of the binary tree can never be smaller than the square root of the size of the minimal dag, and that there are examples that match this bound. We introduce a new combined structure, the hybrid dag, which is guaranteed to be smaller than (or equal in size to) both dags. Interestingly, we find through experiments that last child/previous sibling encodings are much better for XML compression via dags, than fcns encodings. We determine the average sizes of unranked and binary dags over a given set of labels (under uniform distribution) in terms of their exact generating functions, and in terms of their asymptotical behavior.
Original language | English |
---|---|
Pages (from-to) | 1322-1371 |
Number of pages | 50 |
Journal | Theory of Computing Systems |
Volume | 57 |
Issue number | 4 |
Early online date | 25 May 2014 |
DOIs | |
Publication status | Published - 30 Nov 2015 |