Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants

S. C. Fry*, R. C. Smith, K. F. Renwick, D. J. Martin, S. K. Hodge, K. J. Matthews

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

1. Cell-free extracts of all plants tested contained aΓ novel enzyme activity (xyloglucan endotransglycosylase, XET) able to transfer a high-M(r) portion from a donor xyloglucan to a suitable acceptor such as a xyloglucan-derived nonasaccharide (Glc4Xyl3GalFuc; XG9). 2. A simple assay for the enzyme, using [3H]XG9 and based on the ability of the [3H]polysaccharide product to bind to filter paper, is described. 3. The enzyme was highly specific for xyloglucan as the glycosyl donor, and showed negligible transglycosylation of other polysaccharides, including CM-cellulose. 4. The K(m) for XG9 was 50 μM; certain other 3H-labelled xyloglucan oligosaccharides also acted as acceptors, and certain non-radioactive xyloglucan oligosaccharides competed with [3H]XG9 as acceptor; the minimum acceptor structure was deduced to be: Xyl Xyl ↓ ↓ Glc → Glc → Glc 5. The pH optimum was approx. 5.5 and the enzyme was less than half as active at pH 7.0. The enzyme was slightly activated by Ca2+, Mg2+, Mn2+, spermidine ascorbate and 2-mercaptoethanol and inhibited by Ag+, Hg2+, Zn2+ and La3+. 6. XET activity was essentially completely extracted by aqueous solutions of low ionic strength; Triton X-100. Ca2+, La3+, and Li+ did not enhance extraction. Negligible activity was left in the unextractable (cell-wall-rich) residue. 7. The enzyme differed from the major cellulases (EC 3.2.1.4) of pea in: (a) susceptibility to inhibition by cello-oligosaccharides (b) polysaccharide substrate specificity (c) inducibility by auxin (d) requirement for salt in the extraction buffer and (e) activation by 2-mercaptoethanol. XET is therefore concluded to be a new enzyme activity (xyloglucan:xyloglucan xyloglucanotransferase; EC 2.4.1.-). 8. XET was detected in extracts of the growing portions of dicotyledons monocotyledons (graminaceous and liliaceous) and bryophytes. 9. The activity was positively correlated with growth rate in different zones of the pea stem. 10. We propose that XET is responsible for cutting and rejoining intermicrofibrillar xyloglucan chains and that it thus causes the wall-loosening required for plant cell expansion.

Original languageEnglish
Pages (from-to)821-828
Number of pages8
JournalBiochemical Journal
Volume282
Issue number3
DOIs
Publication statusPublished - 1 Jan 1992

Fingerprint

Dive into the research topics of 'Xyloglucan endotransglycosylase, a new wall-loosening enzyme activity from plants'. Together they form a unique fingerprint.

Cite this