Edinburgh Research Explorer

Institute for Adaptive and Neural Computation

Organisational unit: Research Institute

  1. Using Machine Learning to Focus Iterative Optimization

    Agakov, F., Bonilla, E., Cavazos, J., Franke, B., Fursin, G., O'Boyle, M. F. P., Thomson, J., Toussaint, M. & Williams, C. K. I., 2006, Proceedings of the International Symposium on Code Generation and Optimization. Washington, DC, USA: Institute of Electrical and Electronics Engineers (IEEE), p. 295-305 11 p. (CGO '06).

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  2. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    Onken, A., Liu, J. K., Karunasekara, P. P. C. R., Delis, I., Gollisch, T. & Panzeri, S., 4 Nov 2016, In : PLoS Computational Biology. 12, 11, p. 1-46 46 p., e1005189.

    Research output: Contribution to journalArticle

  3. Using a neural net to instantiate a deformable model

    Williams, C. K. I., Revow, M. & Hinton, G. E., 1995, Advances in neural information processing systems. p. 965-972 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  4. Using affective and behavioural sensors to explore aspects of collaborative music making

    Morgan, E., Gunes, H. & Bryan-Kinns, N., Oct 2015, In : International Journal of Human-Computer Studies. 82, p. 31-47 17 p.

    Research output: Contribution to journalArticle

  5. Using the Nyström Method to Speed Up Kernel Machines

    Williams, C. K. I. & Seeger, M., 2001, Advances in Neural Information Processing Systems 13 (NIPS 2000). Leen, T. K., Dietterich, T. G. & Tresp, V. (eds.). MIT Press, p. 682-688 7 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  6. Utilising disaggregated energy data in feedback designs – the IDEAL project

    Goddard, N., Pullinger, M., Webb, L., Farrow, E., Farrow, E., Kilgour, J., Morgan, E. & Moore, J., Jul 2016, TEDDINET Energy Feedback Symposium 2016. p. 74-77 4 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  7. VEEGAN: Reducing Mode Collapse in GANs using Implicit Variational Learning

    Srivastava, A., Valkov, L., Russell, C., Gutmann, M. & Sutton, C., 9 Dec 2017, Advances in Neural Information Processing Systems 30 (NIPS 2017). Long Beach, CA, USA: Curran Associates Inc, p. 3308-3318 18 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  8. VIBES: A Variational Inference Engine for Bayesian Networks

    Bishop, C. M., Spiegelhalter, D. J. & Winn, J., 2002, Advances in Neural Information Processing Systems 15 (NIPS 2002). 8 p.

    Research output: Chapter in Book/Report/Conference proceedingConference contribution

  9. Validating a standardised test battery for synesthesia: Does the Synesthesia Battery reliably detect synesthesia?

    Carmichael, D. A., Down, M. P., Shillcock, R. C., Eagleman, D. M. & Simner, J., May 2015, In : Consciousness and Cognition. 33, p. 375-385 11 p.

    Research output: Contribution to journalArticle