Edinburgh Research Explorer

A high-throughput and design of experiment mediated optimization of pigment-based ink formulations

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)131-139
Number of pages9
JournalPigment & resin technology
Issue number3
Publication statusPublished - 2008


Purpose – The purpose of this paper is to develop a high-throughput approach to optimize printing of pigment-based formulations.

Design/methodology/approach – A total of 40 formulations were robotically prepared by varying the concentrations of diethyleneglycol, glycerol and surfynol. In addition, a variety of inkjet printer (process) variables (voltage, pulse width and frequency) was varied. The combined influence of these two sets of variables on printing performance were determined, analysed and optimised using the Statistical Software Package (MODDE 8), which uses multiple linear regression and partial least square analysis.

Findings – The components diethyleneglycol and surfynol were observed to predominantly control viscosity and surface tension of all formulations, which voltage and pulse width were found to be the main factors controlling the spread of the droplet on the substrate.

Practical implications – Optimisation of pigment-based formulations has typically involved the one-by-one systematic variation of components in a stepwise manner. The work reported here allowed the generation of a robust model allowing the properties of any new formulation to be accurately predicted. Importantly, the experimental tools and methods developed can be applied quite generally to the preparation of any new formulation for inkjet printing application.

Originality/value – Experimental design and high-throughput technology allow new formulations to be accurately predicted for diverse inkjet applications.

    Research areas

  • pigments, inks, experimental design, ink jet printers

ID: 1481726