Edinburgh Research Explorer

Ab initio calculations and interatomic potentials for iron and iron alloys: Achievements within the Perfect Project

Research output: Contribution to journalArticle

  • L. Malerba
  • Graeme Ackland
  • C. S. Becquart
  • G. Bonny
  • C. Domain
  • S. L. Dudarev
  • C. -C. Fu
  • D. Hepburn
  • M. C. Marinica
  • P. Olsson
  • J. M. Raulot
  • R. C. Pasianot
  • F. Soisson
  • D. Terentyev
  • E. Vincent
  • F. Willaime

Related Edinburgh Organisations

Original languageEnglish
Pages (from-to)718
Number of pages12
JournalJournal of Nuclear Materials
Volume406
Issue number1
DOIs
StatePublished - 1 Nov 2010

Abstract

The objective of the FP6 Perfect Project was to develop a first example of integrated multiscale computational models, capable of describing the effects of irradiation in nuclear reactor components, namely vessel and internals. The use of ab initio techniques to study, in the most reliable way currently possible, atomic-level interactions between species and defects, and the transfer of this knowledge to interatomic potentials, of use for large scale dynamic simulations, lie at the core of this effort. The target materials of the Project were bainitic steels (vessel) and austenitic steels (internals), i.e. iron alloys. In this article, the advances made within the Project in the understanding of defect properties in Fe alloys, by means of ab initio calculations, and in the development of interatomic potentials for Fe and Fe alloys are overviewed, thereby providing a reference basis for further progress in the field. Emphasis is put in showing how the produced data have enhanced our level of understanding of microstructural processes occurring under irradiation in model alloys and steels used in existing nuclear power plants. (C) 2010 Elsevier B.V. All rights reserved.

    Research areas

  • KINETIC MONTE-CARLO, GENERALIZED GRADIENT APPROXIMATION, MOLECULAR-DYNAMICS SIMULATIONS, PRESSURE-VESSEL STEELS, ALPHA-IRON, BCC-FE, POINT-DEFECTS, INTERSTITIAL CLUSTERS, COMPUTER-SIMULATION, IRRADIATED IRON

ID: 1277128