Edinburgh Research Explorer

Adaptive evolution of Toll-like receptor 5 in domesticated mammals

Research output: Contribution to journalArticle

  • Sarah A Smith
  • Oliver C Jann
  • David Haig
  • George C Russell
  • Dirk Werling
  • Elizabeth J Glass
  • Richard D Emes

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Rights statement: This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Final published version, 1.14 MB, PDF document

Original languageEnglish
Article number122
JournalBMC Evolutionary Biology
Issue number1
Publication statusPublished - 2012


ABSTRACT: BACKGROUND: Previous studies have proposed that mammalian toll like receptors (TLRs) have evolved under diversifying selection due to their role in pathogen detection. To determine if this is the case, we examined the extent of adaptive evolution in the TLR5 gene in both individual species and defined clades of the mammalia. RESULTS: In support of previous studies, we find evidence of adaptive evolution of mammalian TLR5. However, we also show that TLR5 genes of domestic livestock have a concentration of single nucleotide polymorphisms suggesting a specific signature of adaptation. Using codon models of evolution we have identified a concentration of rapidly evolving codons within the TLR5 extracellular domain a site of interaction between host and the bacterial surface protein flagellin. CONCLUSIONS: The results suggest that interactions between pathogen and host may be driving adaptive change in TLR5 by competition between species. In support of this, we have identified single nucleotide polymorphisms (SNP) in sheep and cattle TLR5 genes that are co-localised and co-incident with the predicted adaptive codons suggesting that adaptation in this region of the TLR5 gene is on-going in domestic species.

Download statistics

No data available

ID: 4291962