Edinburgh Research Explorer

Altered nitric oxide bioavailability contributes to diesel exhaust inhalation-induced cardiovascular dysfunction in man

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: © 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley‐Blackwell. This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

    Final published version, 393 KB, PDF-document

http://jaha.ahajournals.org/content/2/1/e004309#corresp-1
Original languageEnglish
Article numbere004309
Number of pages17
JournalJournal of the American Heart Association
Volume2
Issue number1
DOIs
Publication statusPublished - Feb 2013

Abstract



Background
Diesel exhaust inhalation causes cardiovascular dysfunction including impaired vascular reactivity, increased blood pressure, and arterial stiffness. We investigated the role of nitric oxide (NO) bioavailability in mediating these effects.

Methods and Results
In 2 randomized double‐blind crossover studies, healthy nonsmokers were exposed to diesel exhaust or filtered air. Study 1: Bilateral forearm blood flow was measured during intrabrachial infusions of acetylcholine (ACh; 5 to 20 μg/min) and sodium nitroprusside (SNP; 2 to 8 μg/min) in the presence of the NO clamp (NO synthase inhibitor NG‐monomethyl‐l‐arginine (l‐NMMA) 8 μg/min coinfused with the NO donor SNP at 90 to 540 ng/min to restore basal blood flow). Study 2: Blood pressure, arterial stiffness, and cardiac output were measured during systemic NO synthase inhibition with intravenous l‐NMMA (3 mg/kg). Following diesel exhaust inhalation, plasma nitrite concentrations were increased (68±48 versus 41±32 nmol/L; P=0.006) despite similar l‐NMMA–induced reductions in basal blood flow (−20.6±14.7% versus −21.1±14.6%; P=0.559) compared to air. In the presence of the NO clamp, ACh and SNP caused dose‐dependent vasodilatation that was not affected by diesel exhaust inhalation (P>0.05 for both). Following exposure to diesel exhaust, l‐NMMA caused a greater increase in blood pressure (P=0.048) and central arterial stiffness (P=0.007), but reductions in cardiac output and increases in systemic vascular resistance (P>0.05 for both) were similar to those seen with filtered air.

Conclusions
Diesel exhaust inhalation disturbs normal vascular homeostasis with enhanced NO generation unable to compensate for excess consumption. We suggest the adverse cardiovascular effects of air pollution are, in part, mediated through reduced NO bioavailability.

Download statistics

No data available

ID: 8778875