Edinburgh Research Explorer

An Optimization-based Motion Planner for Safe Autonomous Driving

Research output: Contribution to conferencePaper

Original languageEnglish
Number of pages3
Publication statusE-pub ahead of print - 13 Jul 2020
EventSecond (virtual) workshop on Robust autonomy: Safe robot learning and control in uncertain real-world environments -
Duration: 13 Jul 202013 Jul 2020
https://sites.google.com/view/rss2020robustautonomy/home

Workshop

WorkshopSecond (virtual) workshop on Robust autonomy
Period13/07/2013/07/20
Internet address

Abstract

Guaranteeing safety in motion planning is a crucial bottleneck on the path towards wider adoption of autonomous driving technology. A promising direction is to pose safety requirements as planning constraints in nonlinear optimization problems of motion synthesis. However, many implementations of this approach are hindered by uncertain convergence and local optimality of the solutions, affecting the planner’s overall robustness. In this paper, we propose a novel two-stage optimization framework: we first find the solution to a Mixed-Integer Linear Programming (MILP) approximation of the motion synthesis problem, which in turn initializes a second Nonlinear Programming (NLP) formulation. We show that initializing the NLP stage with the MILP solution leads to better convergence, lower costs, and outperforms a state-of-the-art Nonlinear Model Predictive Control baseline in both progress and comfort metrics. 

ID: 155859190