Edinburgh Research Explorer

Analysis of dynamic texture and spatial spectral descriptors of dynamic contrast-enhanced brain magnetic resonance images for studying small vessel disease

Research output: Contribution to journalArticlepeer-review

Original languageEnglish
JournalMagnetic Resonance Imaging
Early online date13 Nov 2019
Publication statusE-pub ahead of print - 13 Nov 2019


Cerebral small vessel disease (SVD) comprises various pathological processes affecting small brain vessels and damaging white and grey matter. In this paper, we propose a framework comprising region of interest sampling, dynamic spectral and texture description, functional principal component analysis, and statistical analysis to study exogenous contrast agent distribution over time in various brain regions in patients with recent mild stroke and SVD features.We compared our results against current semi-quantitative surrogates of dysfunction such as signal enhancement area and slope. Biological sex, stroke lesion type and overall burden of white matter hyperintensities (WMH) were significant predictors of intensity, spectral, and texture features extracted from the ventricular region (p-value < 0.05), explaining between a fifth and a fourth of the data variance (0.20 ≤Adj.R2 ≤ 0.25). We observed that spectral feature reflected more the dysfunction compared to other descriptors since the overall WMH burden explained consistently the power spectra variability in blood vessels, cerebrospinal fluid, deep grey matter and white matter. Our preliminary results show the potential of the framework for the analysis of dynamic contrast-enhanced brain magnetic resonance imaging acquisitions in SVD since significant variation in our metrics was related to the burden of SVD features. Therefore, our proposal may increase sensitivity to detect subtle features of small vessel dysfunction. A public version of the code will be released on our research website.

Download statistics

No data available

ID: 120277131