Edinburgh Research Explorer

Applications of genotyping by sequencing in aquaculture breeding and genetics

Research output: Contribution to journalReview article

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Final published version, 260 KB, PDF-document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Pages (from-to)670-682
JournalReviews in Aquaculture
Volume10
Issue number3
Early online date1 Feb 2017
DOIs
Publication statusPublished - Aug 2018

Abstract

Selective breeding is increasingly recognized as a key component of sustainable
production of aquaculture species. The uptake of genomic technology in aquaculture breeding has traditionally lagged behind terrestrial farmed animals. However, the rapid development and application of sequencing technologies has allowed aquaculture to narrow the gap, leading to substantial genomic resources for all major aquaculture species. While high-density single-nucleotide polymorphism (SNP) arrays for some species have been developed recently, direct genotyping by sequencing (GBS) techniques have underpinned many of the advances in aquaculture genetics and breeding to date. In particular, restriction-site associated DNA sequencing (RAD-Seq) and subsequent variations have been extensively applied to generate population-level SNP genotype data. These GBS techniques are not dependent on prior genomic information such as a reference genome assembly for the species of interest. As such, they have been widely utilized by researchers and companies focussing on nonmodel aquaculture species with relatively small research communities. Applications of RAD-Seq techniques have included generation of genetic linkage maps, performing genome-wide association studies, improvements of reference genome assemblies and, more recently, genomic selection for traits of interest to aquaculture like growth, sex determination or disease resistance. In this review, we briefly discuss the history of GBS, the nuances of the various GBS techniques, bioinformatics approaches and application of these techniques to various aquaculture species.

    Research areas

  • aquaculture, genotyping, next-generation sequencing, restriction-site associated DNA, selective breeding, single nucleotide polymorphism

Download statistics

No data available

ID: 31056390