Edinburgh Research Explorer

Concepts, control and context: A connectionist account of normal and disordered semantic cognition

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Final published version, 2 MB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Pages (from-to)293-328
JournalPsychological Review
Volume128
Issue number3
DOIs
Publication statusPublished - 30 Apr 2018

Abstract

Semantic cognition requires conceptual representations shaped by verbal and non-verbal experience and executive control processes that regulate activation of knowledge to meet current situational demands. A complete model must also account for the representation of concrete and abstract words, of taxonomic and associative relationships, and for the role of context in shaping meaning. We present the first major attempt to assimilate all of these elements within a unified, implemented computational framework. Our model combines a hub-and-spoke architecture with a buffer that allows its state to be influenced by prior context. This hybrid structure integrates the view, from cognitive neuroscience, that concepts are grounded in sensory-motor representation with the view, from computational linguistics, that knowledge is shaped by patterns of lexical co-occurrence. The model successfully codes knowledge for abstract and concrete words, associative and taxonomic relationships, and the multiple meanings of homonyms, within a single representational space. Knowledge of abstract words is acquired through (a) their patterns of co-occurrence with other words and (b) acquired embodiment, whereby they become indirectly associated with the perceptual features of co-occurring concrete words. The model accounts for executive influences on semantics by including a controlled retrieval mechanism that provides top-down input to amplify weak semantic relationships. The representational and control elements of the model can be damaged independently, and the consequences of such damage closely replicate effects seen in neuropsychological patients with loss of semantic representation vs. control processes. Thus, the model provides a wide-ranging and neurally plausible account of normal and impaired semantic cognition.

    Research areas

  • semantic diversity, imageability, parallel distributed processing, semantic dementia, semantic aphasia

Download statistics

No data available

ID: 47792356