Edinburgh Research Explorer

Cwc21p promotes the second step conformation of the spliceosome and modulates 3' splice site selection

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Rights statement: © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

    Final published version, 1.87 MB, PDF document

Original languageEnglish
JournalNucleic Acids Research
Publication statusPublished - 3 Mar 2015


Pre-mRNA splicing involves two transesterification steps catalyzed by the spliceosome. How RNA substrates are positioned in each step and the molecular rearrangements involved, remain obscure. Here, we show that mutations in PRP16, PRP8, SNU114 and the U5 snRNA that affect this process interact genetically with CWC21, that encodes the yeast orthologue of the human SR protein, SRm300/SRRM2. Our microarray analysis shows changes in 3' splice site selection at elevated temperature in a subset of introns in cwc21Δ cells. Considering all the available data, we propose a role for Cwc21p positioning the 3' splice site at the transition to the second step conformation of the spliceosome, mediated through its interactions with the U5 snRNP. This suggests a mechanism whereby SRm300/SRRM2, might influence splice site selection in human cells.

Download statistics

No data available

ID: 18982862