TY - JOUR
T1 - Delaying the waterfall transition in warm hybrid inflation
AU - Bastero-Gil, Mar
AU - Berera, Arjun
AU - Metcalf, Thomas P.
AU - Rosa, Joao G.
PY - 2014/3
Y1 - 2014/3
N2 - We analyze the dynamics and observational predictions of supersymmetric hybrid inflation in the warm regime, where dissipative effects are mediated by the waterfall fields and their subsequent decay into light degrees of freedom. This produces a quasi-thermal radiation bath with a slowly-varying temperature during inflation and further damps the inflaton's motion, thus prolonging inflation. As in the standard supercooled scenario, inflation ends when the waterfall fields become tachyonic and can no longer sustain a nearly constant vacuum energy, but the interaction with the radiation bath makes the waterfall fields effectively heavier and delays the phase transition to the supersymmetric minimum. In this work, we analyze for the first time the effects of finite temperature corrections and SUSY mass splittings on the quantum effective potential and the resulting dissipation coefficient. We show, in particular, that dissipation can significantly delay the onset of the tachyonic instability to yield 50-60 e-folds of inflation and an observationally consistent primordial spectrum, which is not possible in the standard supercooled regime when inflation is driven by radiative corrections.
AB - We analyze the dynamics and observational predictions of supersymmetric hybrid inflation in the warm regime, where dissipative effects are mediated by the waterfall fields and their subsequent decay into light degrees of freedom. This produces a quasi-thermal radiation bath with a slowly-varying temperature during inflation and further damps the inflaton's motion, thus prolonging inflation. As in the standard supercooled scenario, inflation ends when the waterfall fields become tachyonic and can no longer sustain a nearly constant vacuum energy, but the interaction with the radiation bath makes the waterfall fields effectively heavier and delays the phase transition to the supersymmetric minimum. In this work, we analyze for the first time the effects of finite temperature corrections and SUSY mass splittings on the quantum effective potential and the resulting dissipation coefficient. We show, in particular, that dissipation can significantly delay the onset of the tachyonic instability to yield 50-60 e-folds of inflation and an observationally consistent primordial spectrum, which is not possible in the standard supercooled regime when inflation is driven by radiative corrections.
KW - inflation
KW - particle physics cosmology connection
KW - physics of the early universe
KW - supersymmetry and cosmology
KW - ELECTROWEAK PHASE-TRANSITION
KW - LINEAR SIGMA-MODEL
KW - FINITE-TEMPERATURE
U2 - 10.1088/1475-7516/2014/03/023
DO - 10.1088/1475-7516/2014/03/023
M3 - Article
VL - 2014
JO - Journal of Cosmology and Astroparticle Physics (JCAP)
JF - Journal of Cosmology and Astroparticle Physics (JCAP)
SN - 1475-7516
IS - 3
M1 - 023
ER -