Edinburgh Research Explorer

Enhanced avidity from a multivalent fluorescent antimicrobial peptide enables pathogen detection in a human lung model.

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

    Final published version, 6 MB, PDF-document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
JournalScientific Reports
Early online date10 Jun 2019
DOIs
Publication statusE-pub ahead of print - 10 Jun 2019

Abstract

Rapid in situ detection of pathogens coupled with high resolution imaging in the distal human lung has the potential to provide new insights and diagnostic utility in patients in whom pneumonia is suspected. We have previously described an antimicrobial peptide (AMP)
Ubiquicidin (fragment UBI29-41) labelled with an environmentally sensitive fluorophore that optically detected bacteria in vitro but not ex vivo. Here, we describe further chemical development of this compound and demonstrate that altering the secondary structure of the AMP to generate a tri-branched dendrimeric scaffold provides enhanced signal in vitro and ex vivo and
consequently allows the rapid detection of pathogens in situ in an explanted human lung. This compound (NBD-UBIdend) demonstrates bacterial labelling specificity for a broad panel of pathogenic bacteria and Aspergillus fumigatus. NBD-UBIdend demonstrated high signal-to-noise fluorescence amplification upon target engagement, did not label host mammalian cells and was
non-toxic and chemically robust within the inflamed biological environment. Intrapulmonary delivery of NBD-UBIdend, coupled with optical endomicroscopy demonstrated real-time, in situ detection of bacteria in explanted whole human Cystic Fibrosis lungs.

Download statistics

No data available

ID: 90925436