Edinburgh Research Explorer

Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936

Research output: Contribution to journalArticle

Abstract

Recent advances in genome-wide DNA methylation (DNAm) profiling for smoking behaviour have given rise to a new, molecular biomarker of smoking exposure. It is unclear whether a smoking-associated DNAm (epigenetic) score has predictive value for ageing-related health outcomes which is independent of contributions from self-reported (phenotypic) smoking measures. Blood DNA methylation levels were measured in 895 adults aged 70 years in the Lothian Birth Cohort 1936 (LBC1936) study using the Illumina 450K assay. A DNA methylation score based on 230 CpGs was used as a proxy for smoking exposure. Associations between smoking variables and health outcomes at age 70 were modelled using general linear modelling (ANCOVA) and logistic regression. Additional analyses of smoking with brain MRI measures at age 73 (n = 532) were performed. Smoking-DNAm scores were positively associated with self-reported smoking status (P < 0.001, eta-squared ɳ2 = 0.63) and smoking pack years (r = 0.69, P < 0.001). Higher smoking DNAm scores were associated with variables related to poorer cognitive function, structural brain integrity, physical health, and psychosocial health. Compared with phenotypic smoking, the methylation marker provided stronger associations with all of the cognitive function scores, especially visuospatial ability (P < 0.001, partial eta-squared ɳp2 = 0.022) and processing speed (P < 0.001, ɳp2 = 0.030); inflammatory markers (all P < 0.001, ranges from ɳp2 = 0.021 to 0.030); dietary patterns (healthy diet (P < 0.001, ηp2 = 0.052) and traditional diet (P < 0.001, ɳp2 = 0.032); stroke (P = 0.006, OR 1.48, 95% CI 1.12, 1.96); mortality (P < 0.001, OR 1.59, 95% CI 1.42, 1.79), and at age 73; with MRI volumetric measures (all P < 0.001, ranges from ɳp2 = 0.030 to 0.052). Additionally, education was the most important life-course predictor of lifetime smoking tested. Our results suggest that a smoking-associated methylation biomarker typically explains a greater proportion of the variance in some smoking-related morbidities in older adults, than phenotypic measures of smoking exposure, with some of the accounted-for variance being independent of phenotypic smoking status.

    Research areas

  • clinical genetics, predictive markers

Download statistics

No data available

ID: 99186357