Edinburgh Research Explorer

Genomic prediction for tuberculosis resistance in dairy cattle

Research output: Contribution to journalArticlepeer-review

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Rights statement: Copyright: © 2014 Tsairidou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

    Final published version, 385 KB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Pages (from-to)e96728
JournalPLoS ONE
Issue number5
Publication statusPublished - 8 May 2014


BACKGROUND: The increasing prevalence of bovine tuberculosis (bTB) in the UK and the limitations of the currently available diagnostic and control methods require the development of complementary approaches to assist in the sustainable control of the disease. One potential approach is the identification of animals that are genetically more resistant to bTB, to enable breeding of animals with enhanced resistance. This paper focuses on prediction of resistance to bTB. We explore estimation of direct genomic estimated breeding values (DGVs) for bTB resistance in UK dairy cattle, using dense SNP chip data, and test these genomic predictions for situations when disease phenotypes are not available on selection candidates.

METHODOLOGY/PRINCIPAL FINDINGS: We estimated DGVs using genomic best linear unbiased prediction methodology, and assessed their predictive accuracies with a cross validation procedure and receiver operator characteristic (ROC) curves. Furthermore, these results were compared with theoretical expectations for prediction accuracy and area-under-the-ROC-curve (AUC). The dataset comprised 1151 Holstein-Friesian cows (bTB cases or controls). All individuals (592 cases and 559 controls) were genotyped for 727,252 loci (Illumina Bead Chip). The estimated observed heritability of bTB resistance was 0.23±0.06 (0.34 on the liability scale) and five-fold cross validation, replicated six times, provided a prediction accuracy of 0.33 (95% C.I.: 0.26, 0.40). ROC curves, and the resulting AUC, gave a probability of 0.58, averaged across six replicates, of correctly classifying cows as diseased or as healthy based on SNP chip genotype alone using these data.

CONCLUSIONS/SIGNIFICANCE: These results provide a first step in the investigation of the potential feasibility of genomic selection for bTB resistance using SNP data. Specifically, they demonstrate that genomic selection is possible, even in populations with no pedigree data and on animals lacking bTB phenotypes. However, a larger training population will be required to improve prediction accuracies.

Download statistics

No data available

ID: 15271213