Edinburgh Research Explorer

Growth, entropy and commutativity of algebras satisfying prescribed relations

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

Original languageEnglish
Pages (from-to)1197-1212
Number of pages16
JournalSelecta Mathematica
Volume20
Issue number4
Early online date17 Apr 2014
DOIs
Publication statusPublished - Oct 2014

Abstract

In 1964, Golod and Shafarevich found that, provided that the number of relations of each degree satisfies some bounds, there exist infinitely dimensional algebras satisfying the relations. These algebras are called Golod-Shafarevich algebras. This paper provides bounds for the growth function on images of Golod-Shafarevich algebras based upon the number of defining relations. This extends results from Smoktunowicz and Bartholdi (Q J Math. ). Lower bounds of growth for constructed algebras are also obtained, permitting the construction of algebras with various growth functions of various entropies. In particular, the paper answers a question by Drensky (A private communication, 2013) by constructing algebras with subexponential growth satisfying given relations, under mild assumption on the number of generating relations of each degree. Examples of nil algebras with neither polynomial nor exponential growth over uncountable fields are also constructed, answering a question by Zelmanov (2013). Recently, several open questions concerning the commutativity of algebras satisfying a prescribed number of defining relations have arisen from the study of noncommutative singularities. Additionally, this paper solves one such question, posed by Donovan and Wemyss (Noncommutative deformations and flops [math.AG]).

    Research areas

  • Golod-Shaferevich algebras, Growth of algebras and the Gelfand-Kirillov dimension, GELFAND-KIRILLOV DIMENSION, POWER-SERIES RINGS, BEZOUT

Download statistics

No data available

ID: 18558285