Edinburgh Research Explorer

Influence of particle composition and thermal cycling on bijel formation

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Original languageEnglish
Article number494223
Pages (from-to)-
Number of pages6
JournalJournal of Physics: Condensed Matter
Volume20
Issue number49
DOIs
Publication statusPublished - 10 Dec 2008

Abstract

Colloidal particles with appropriate wetting properties can become very strongly trapped at an interface between two immiscible fluids. We have harnessed this phenomenon to create a new class of soft materials with intriguing and potentially useful characteristics. The material is known as a bijel: bicontinuous interfacially-jammed emulsion gel. It is a colloid-stabilized emulsion with fluid-bicontinuous domains. The potential to create these gels was first predicted using computer simulations. Experimentally we use mixtures of water and 2,6-lutidine at the composition for which the system undergoes a critical demixing transition on warming. Colloidal silica, with appropriate surface chemistry, is dispersed while the system is in the single-fluid phase; the composite sample is then slowly warmed well beyond the critical temperature. The liquids phase separate via spinodal decomposition and the particles become swept up on the newly created interfaces. As the domains coarsen the interfacial area decreases and the particles eventually become jammed together. The resulting structures have a significant yield stress and are stable for many months. Here we begin to explore the complex wetting properties of fluorescently tagged silica surfaces in water-lutidine mixtures, showing how they can be tuned to allow bijel creation. Additionally we demonstrate how the particle properties change with time while they are immersed in the solvents.

    Research areas

  • SILICA SPHERES, COLLOIDAL PARTICLES, WETTING TRANSITION, EMULSIONS, WATER, SURFACTANT, MIXTURE, NANOPARTICLES, ADSORPTION, MONOLAYERS

ID: 1275636