Edinburgh Research Explorer

Information production in homogeneous isotropic turbulence

Research output: Contribution to journalArticlepeer-review

Related Edinburgh Organisations

Open Access permissions

Open

Documents

https://journals.aps.org/pre/abstract/10.1103/PhysRevE.100.041101
Original languageEnglish
Number of pages5
JournalPhysical Review E
Volume100
Issue number4
DOIs
Publication statusPublished - 14 Oct 2019

Abstract

We study the Reynolds number scaling of the Kolmogorov-Sinai entropy and attractor dimension for three dimensional homogeneous isotropic turbulence through the use of direct numerical simulation. To do so, we obtain Lyapunov spectra for a range of different Reynolds numbers by following the divergence of a large number of orthogonal fluid trajectories. We find that the attractor dimension grows with the Reynolds number as Re$^{2.35}$ with this exponent being larger than predicted by either dimensional arguments or intermittency models. The distribution of Lyapunov exponents is found to be finite around $\lambda \approx 0$ contrary to a possible divergence suggested by Ruelle. The relevance of the Kolmogorov-Sinai entropy and Lyapunov spectra in comparing complex physical systems is discussed.

    Research areas

  • physics.flu-dyn, hep-th, nlin.CD

Download statistics

No data available

ID: 125727332