Edinburgh Research Explorer

Investigating motility and pattern formation in pluripotent stem cells through agent-based modeling

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages909-913
Number of pages5
ISBN (Electronic)9781728146171
DOIs
Publication statusPublished - Oct 2019
Event19th International Conference on Bioinformatics and Bioengineering, BIBE 2019 - Athens, Greece
Duration: 28 Oct 201930 Oct 2019

Publication series

NameProceedings - 2019 IEEE 19th International Conference on Bioinformatics and Bioengineering, BIBE 2019

Conference

Conference19th International Conference on Bioinformatics and Bioengineering, BIBE 2019
CountryGreece
CityAthens
Period28/10/1930/10/19

Abstract

Understanding and predicting the pattern formation in groups of pluripotent stem cells has the potential to improve efficiency and efficacy of stem cell therapies. However, the underlying molecular mechanisms of pluripotent stem cell behaviors are highly complex and are currently still not fully understood. A key practical question is whether deep biological modelling of the cells is essential to predict their pattern formation, or whether there is sufficient predictive power in simply modelling their behaviors and interactions at a higher level. This study focuses on the social interactions and behaviors of pluripotent stem cells at a high-level to predict aggregate crowd behaviors within a level of uncertainty. Agent-based modelling was applied to study the pattern formation in pluripotent stem cells. Five models were established to test four biologically plausible rules of cell motility in terms of: a) velocity, b) directional persistence time, c) directional movements, and d) border effect. We found that it is possible that cells' directional movements based on local density play an important role of the pattern formation, and pattern formation in pluripotent stem cells is governed by a complex combination of rules in our agent-based model simulations, which account for much of the variability observed in experimental findings.

    Research areas

  • Agent-based modelling, Pattern formation, Pluripotent stem cells

Event

19th International Conference on Bioinformatics and Bioengineering, BIBE 2019

28/10/1930/10/19

Athens, Greece

Event: Conference

ID: 163092581