Edinburgh Research Explorer

Investigation of Single Air Bubble Dynamics and the Effect of Nanoparticles in Rectangular Minichannels

Research output: Contribution to journalArticle

Original languageEnglish
Pages (from-to)510-517
JournalJournal of molecular liquids
Early online date24 Jan 2019
Publication statusPublished - 1 Apr 2019


Bubble dynamics and understanding related mechanisms based on force analysis are necessary for better understanding two-phase flow phenomena in small channels. To address this subject, experiments were conducted with injected single air bubbles into rectangular minichannels containing flows of pure water, pure ethanol and TiO2-nanoparticle-based nanofluids, which had a nanoparticle mass fraction of 0.005 wt% for both water and ethanol base fluids. For a range of fluid flow rates, bubble movement and temperature profiles were captured along the channel using high-speed and infrared (IR) cameras, respectively. Upon heating, when using nanofluids, deposition of TiO2 nanoparticles occurred. The results in the channels with cross sectional dimensions of 2 mm × 4 mm and heated length of 7 cm were compared with their counterparts on plain surfaces. Heat fluxes were applied by means of a tantalum film heater on the outer surface of the channel. Bubble dynamics and forces acting on the bubbles were quantitatively analyzed in relation to the fluid type, heat flux, flow rate and deposition. This study highlights the effects of TiO2-nanoparticles (dispersed in two different base fluids) on single-bubble dynamics in minichannels. The nanoparticle deposition was found to have a retarding effect on the bubble movement and led to a more elliptical shape rather than a spherical bubble shape. The bubble behavior is comprehensively assessed in the light of the visualization data and acting forces.

Download statistics

No data available

ID: 45462250