Edinburgh Research Explorer

Key questions for next-generation biomonitoring

Research output: Contribution to journalArticle

  • Andreas Makiola
  • Zacchaeus Compson
  • Donald Baird
  • Matthew Barnes
  • Sam Boerlijst
  • Agnes Bouchez
  • Georgina Brennan
  • Alex Bush
  • Elsa Canard
  • Tristan Cordier
  • Simon Creer
  • Allen Curry
  • Patrice David
  • Alex Dumbrell
  • Dominique Gravel
  • Mehrdad Hajibabaei
  • Brian Hayden
  • Berry van der Hoorn
  • Philippe Jarne
  • Iwan Jones
  • Battle Karimi
  • Francois Keck
  • Martyn Kelly
  • Ineke Knot
  • Louie Krol
  • Francois Massol
  • Wendy Monk
  • John Murphy
  • Jan Pawlowski
  • Timonthee Poisot
  • Teresita Porter
  • Kate Randall
  • Emma Ransome
  • Virginie Ravigne
  • Stephane Robin
  • Maarten Schrama
  • Bertrand Schatz
  • Alireza Tamaddoni-Nezhad
  • Krijn Trimbos
  • Corinne Vacher
  • Valentin Vasselon
  • Susie Wood
  • Guy Woodward
  • David A. Bohan

Related Edinburgh Organisations

Open Access permissions



  • Download as Adobe PDF

    Final published version, 996 KB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Article number197
Pages (from-to)1-14
Number of pages14
JournalFrontiers in Environmental Science
Publication statusPublished - 9 Jan 2020


Classical biomonitoring techniques have focused primarily on measures linked to various biodiversity metrics and indicator species. Next-generation biomonitoring (NGB) describes a suite of tools and approaches that allow the examination of a broader spectrum of organizational levels—from genes to entire ecosystems. Here, we frame 10 key questions that we envisage will drive the field of NGB over the next decade. While not exhaustive, this list covers most of the key challenges facing NGB, and provides the basis of the next steps for research and implementation in this field. These questions have been grouped into current- and outlook-related categories, corresponding to the organization of this paper.

    Research areas

  • eDNA, metabarcoding, biodiversity assessment, artificial intelligence, ecological networks

Download statistics

No data available

ID: 132572738