Edinburgh Research Explorer

Large scale variation in DNA copy number in chicken breeds

Research output: Contribution to journalArticle

  • Richard Pma Crooijmans
  • Mark S Fife
  • Tomas W Fitzgerald
  • Shurnevia Strickland
  • Hans H Cheng
  • Pete Kaiser
  • Richard Redon
  • Martien Am Groenen

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: © 2013 Crooijmans et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Final published version, 1 MB, PDF-document

http://www.biomedcentral.com/1471-2164/14/398/abstract
Original languageEnglish
Article number398
JournalBMC Genomics
Volume14
Issue number1
DOIs
Publication statusPublished - 13 Jun 2013

Abstract

BACKGROUND: Detecting genetic variation is a critical step in elucidating the molecular mechanisms underlying phenotypic diversity. Until recently, such detection has mostly focused on single nucleotide polymorphisms (SNPs) because of the ease in screening complete genomes. Another type of variant, copy number variation (CNV), is emerging as a significant contributor to phenotypic variation in many species. Here we describe a genome-wide CNV study using array comparative genomic hybridization (aCGH) in a wide variety of chicken breeds. RESULTS: We identified 3,154 CNVs, grouped into 1,556 CNV regions (CNVRs). Thirty percent of the CNVs were detected in at least 2 individuals. The average size of the CNVs detected was 46.3 kb with the largest CNV, located on GGAZ, being 4.3 Mb. Approximately 75% of the CNVs are copy number losses relatively to the Red Jungle Fowl reference genome. The genome coverage of CNVRs in this study is 60 Mb, which represents almost 5.4% of the chicken genome. In particular large gene families such as the keratin gene family and the MHC show extensive CNV. CONCLUSIONS: A relative large group of the CNVs are line-specific, several of which were previously shown to be related to the causative mutation for a number of phenotypic variants. The chance that inter-specific CNVs fall into CNVRs detected in chicken is related to the evolutionary distance between the species. Our results provide a valuable resource for the study of genetic and phenotypic variation in this phenotypically diverse species.

Download statistics

No data available

ID: 8595965