Edinburgh Research Explorer

Learning from the 2018 heatwave in the context of climate change: Are high-temperature extremes important for adaptation in Scotland?

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: As the Version of Record of this article is going to be/has been published on a gold open access basis under a CC BY 3.0 licence, this Accepted Manuscript is available for reuse under a CC BY 3.0 licence immediately.

    Accepted author manuscript, 750 KB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

https://iopscience.iop.org/article/10.1088/1748-9326/ab6999
Original languageEnglish
JournalEnvironmental Research Letters
Early online date9 Jan 2020
DOIs
Publication statusE-pub ahead of print - 9 Jan 2020

Abstract

To understand whether high temperatures and temperature extremes are important for climate change adaptation in Scotland, we place the 2018 heatwave in the context of past, present, and future climate, and provide a rapid but comprehensive impact analysis. The observed hottest day, 5-day, and 30-day period of 2018 and the 5-day period with the warmest nights had return periods of 5-15 years for 1950-2018. The warmest night and the maximum 30-day average nighttime temperature were more unusual with return periods of >30 years. Anthropogenic climate change since 1850 has made all these high-temperature extremes more likely. Higher risk ratios are found for experiments from the CMIP6-generation global climate model HadGEM3-GA6 compared to those from the very-large ensemble system weather@home. Between them, the best estimates of the risk ratios for daytime extremes range between 1.2-2.4, 1.2-2.3, and 1.4-4.0 for the 1-, 5-, and 30-day averages. For the corresponding nighttime extremes, the values are higher and the ranges wider (1.5->50, 1.5-5.5, and 1.6->50). The short-period nighttime extremes were more likely in 2018 than in 2017, suggesting a contribution from year-to-year climate variability to the risk enhancement of extreme temperatures due to anthropogenic effects. Climate projections suggest further substantial increases in the likelihood of 2018 temperatures between now and 2050, and that towards the end of the century every summer might be as hot as 2018. Major negative impacts occurred, especially on rural sectors, while transport and water infrastructure alleviated most impacts by implementing costly special measures. Overall, Scotland could cope with the impacts of the 2018 heatwave. However, given the likelihood increase of high-temperature extremes, uncertainty about consequences of even higher temperatures and/or repeated heatwaves, and substantial costs of preventing negative impacts, we conclude that despite its cool climate, high-temperature extremes are important to consider for climate change adaptation in Scotland.

Download statistics

No data available

ID: 129020830