Edinburgh Research Explorer

Mechanical properties of atomically thin boron nitride and the role of interlayer interactions

Research output: Contribution to journalArticle

  • A. Falin
  • Q. Cai
  • E.J.G. Santos
  • D. Scullion
  • D. Qian
  • R. Zhang
  • Z. Yang
  • S. Huang
  • K. Watanabe
  • T. Taniguchi
  • M.R. Barnett
  • Y. Chen
  • R.S. Ruoff
  • L.H. Li

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Accepted author manuscript, 1.79 MB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

  • Download as Adobe PDF

    Final published version, 1.45 MB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

https://pure.qub.ac.uk/en/publications/mechanical-properties-of-atomically-thin-boron-nitride-and-the-ro
Original languageEnglish
Article number15815
JournalNature Communications
Volume8
DOIs
Publication statusPublished - 22 Jun 2017

Abstract

Atomically thin boron nitride (BN) nanosheets are important two-dimensional nanomaterials with many unique properties distinct from those of graphene, but investigation into their mechanical properties remains incomplete. Here we report that high-quality single-crystalline mono- and few-layer BN nanosheets are one of the strongest electrically insulating materials. More intriguingly, few-layer BN shows mechanical behaviours quite different from those of few-layer graphene under indentation. In striking contrast to graphene, whose strength decreases by more than 30% when the number of layers increases from 1 to 8, the mechanical strength of BN nanosheets is not sensitive to increasing thickness. We attribute this difference to the distinct interlayer interactions and hence sliding tendencies in these two materials under indentation. The significantly better interlayer integrity of BN nanosheets makes them a more attractive candidate than graphene for several applications, for example, as mechanical reinforcements.

Download statistics

No data available

ID: 159092426