Edinburgh Research Explorer

Methodological bias associated with soluble protein recovery from soil

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Final published version, 1 MB, PDF document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
Pages (from-to)11186
JournalScientific Reports
Volume8
Issue number1
DOIs
Publication statusPublished - 25 Jul 2018

Abstract

Proteins play a crucial role in many soil processes, however, standardised methods to extract soluble protein from soil are lacking. The aim of this study was to compare the ability of different extractants to quantify the recovery of soluble proteins from three soil types (Cambisol, Ferralsol and Histosol) with contrasting clay and organic matter contents. Known amounts of plant-derived 14C-labelled soluble proteins were incubated with soil and then extracted with solutions of contrasting pH, concentration and polarity. Protein recovery proved highly solvent and soil dependent (Histosol > Cambisol > Ferralsol) and no single extractant was capable of complete protein recovery. In comparison to deionised water (10-60% of the total protein recovered), maximal recovery was observed with NaOH (0.1 M; 61-80%) and Na-pyrophosphate (0.05 M, pH 7.0; 45-75% recovery). We conclude that the dependence of protein recovery on both extractant and soil type prevents direct comparison of studies using different recovery methods, particularly if no extraction controls are used. We present recommendations for a standard protein extraction protocol.

Download statistics

No data available

ID: 69288575