Edinburgh Research Explorer

Methyl donor deficient diets cause distinct alterations in lipid metabolism but are poorly representative of human NAFLD

Research output: Contribution to journalArticle

Related Edinburgh Organisations

Open Access permissions

Open

Documents

  • Download as Adobe PDF

    Rights statement: This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    Final published version, 4 MB, PDF-document

    Licence: Creative Commons: Attribution (CC-BY)

Original languageEnglish
JournalWellcome Open Research
Early online date22 Aug 2017
DOIs
Publication statusE-pub ahead of print - 22 Aug 2017

Abstract

Background: Non-alcoholic fatty liver disease (NAFLD) is a global health issue. Dietary methyl donor restriction is used to induce a NAFLD/non-alcoholic steatohepatitis (NASH) phenotype in rodents, however the extent to which this model reflects human NAFLD remains incompletely understood. To address this, we undertook hepatic transcriptional profiling of methyl donor restricted
rodents and compared these to published human NAFLD datasets.
Methods: Adult C57BL/6J mice were maintained on control, choline deficient (CDD) or methionine/choline deficient (MCDD) diets for four weeks; the effects on methyl donor and lipid biology were investigated by bioinformatic analysis of hepatic gene expression profiles followed by a cross-species comparison with human expression data of all stages of NAFLD.
Results: Compared to controls, expression of the very low density lipoprotein (VLDL) packaging carboxylesterases (Ces1d, Ces1f, Ces3b) and the NAFLD risk allele Pnpla3 were suppressed in MCDD; with Pnpla3 and the liver predominant Ces isoform, Ces3b, also suppressed in CDD. With respect to 1-carbon metabolism, down-regulation of Chka, Chkb, Pcty1a, Gnmt and Ahcy with
concurrent upregulation of Mat2a suggests a drive to maintain S-adenosylmethionine levels. There was minimal similarity between global gene expression patterns in either dietary intervention and any stage of human NAFLD, however some common transcriptomic changes in inflammatory, fibrotic
and proliferative mediators were identified in MCDD, NASH and HCC.
Conclusions: This study suggests suppression of VLDL assembly machinery may contribute to hepatic lipid accumulation in these models, but that CDD and MCDD rodent diets are minimally representative of human NAFLD at the transcriptional level.

Download statistics

No data available

ID: 43126749